

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Mit Silicon Secured Memory
Heartbleed und Co. vorbeugen

Franz Haberhauer
Chief Technologist
Systems Sales Consulting Northern Europe

Chip Advances in the Last Decade

• Focus on better/faster general purpose chip

• More CPU cores per chip

• Memory & PCI interfaces, GPU moved on-chip

• Improved pipelines, branch prediction, cache coherency, reliability, clock
rates, power management etc.

• New Functionality: vector processing/SIMD, virtualization, encryption

– Encryption on-chip is 10X faster and frees CPU cores to do other work

– Database optimizations on chip are analogous

2012 – 25 Years of SPARC Processors

SUNRAY

UltraSPARC I

UltraSPARC II

UltraSPARC III

 UltraSPARC IIIi

SPARC T4

Sunrise:
1st SPARC
Processor

UltraSPARC IV+

UltraSPARC T1

SuperSPARC I

1987 1992 1996 2000 2005 2011 1988 1995 2002

Anniversary Video: http://www.youtube.com/watch?v=IKB9zV8TXuQ
Infographic: http://www.oracle-downloads.com/sparc25info/

http://www.youtube.com/watch?v=IKB9zV8TXuQ
http://www.oracle-downloads.com/sparc25info/
http://www.oracle-downloads.com/sparc25info/
http://www.oracle-downloads.com/sparc25info/

SPARC @ Oracle
7 Processors in 6 Years

2013 2011 2010 2013 2013
@ Hot Chips 2015

16 x 2nd Gen cores
4MB L3 Cache

1.65 GHz

8 x 3rd Gen Cores
4MB L3 Cache

3.0 GHz

16 x 3rd Gen Cores
8MB L3 Cache

3.6 GHz

12 x 3rd Gen Cores
48MB L3 Cache

3.6 GHz

6 x 3rd Gen Cores
48MB L3 Cache

3.6 GHz

SPARC T3 SPARC T4 SPARC T5 SPARC M5 SPARC M6 ‘SONOMA’

Including
Software in Silicon

• Silicon Secured Memory
• DB Query Acceleration
• Inline Decompression
• More….

}

2015

32 x 4th Gen Cores
64MB L3 Cache

4.1 GHz

SPARC M7

8 x 4th Gen Cores
IB

Current
T7-/M7-Servers

Scale-Out
Servers TBA.

It Does not Take Much Die to Make a Difference
SPARC M7

2x-3x More
Throughput

Performance
(16 -> 32 Cores)

30 to 40% More
Single Thread
Performance

Over 2x More
Encryption
Bandwidth

Software in Silicon:
Security in Silicon

SQL in Silicon
Capacity in Silicon

with and Plus
< 1% of Die

(1) Factory configured with one (up to 8 processors) or two (up to 4 processors each) static physical domains
(2) 1, 2, 3 or 4 reconfigurable physical domains
(3) Maximum memory capacity is based on 32 GB DIMMs

SPARC T7 and M7 Systems

T7-1 T7-2 T7-4 M7-8 M7-16

Processors 1 2 2 or 4 Up to 8 1 Up to 16 2

Max Cores 32 64 128 256 512

Max Threads 256 512 1,024 2,048 4,096

Max Memory 3 .5 TB 1 TB 2 TB 4 TB 8 TB

Form Factor 2U 3U 5U Rack / 10U Rack

Domaining LDOMs LDOMs LDOMs LDOMs, PDOMs 1 LDOMs, PDOMs 2

http://oracle.com/m7infowall -> White Paper M7 Systems Architecture
https://blogs.oracle.com/bestperf

http://oracle.com/m7infowall
http://oracle.com/m7infowall
https://blogs.oracle.com/bestperf
https://blogs.oracle.com/bestperf

Silicon Secured Memory
Application Data Integrity (ADI)

Always-On Memory Protection in Hardware

Oracle M7 Silicon Secured Memory

Applications Memory

Pointer “Y”

Pointer “R”

GO

Pointer “B”
GO

• Protects data in memory

• Hidden “color” bits added
to pointers (key) and content (lock)

• Pointer color (key) must match content
color or program is aborted

• Set on memory allocation,
changed on memory free’

• Protects against access off end of
structure, stale pointer access and
malicious attacks

M7 Processor

Always-On Memory Protection in Hardware

Oracle M7 Silicon Secured Memory

Applications Memory

Pointer “Y”

Pointer “R”

GO

Pointer “B”
GO

• Protects data in memory

• Hidden “color” bits added
to pointers (key), and content (lock)

• Pointer color (key) must match content
color or program is aborted

• Set on memory allocation,
changed on memory free’

• Protects against access off end of
structure, stale pointer access and
malicious attacks

• Extremely efficient for software
development

M7 Processor

Linear Buffer Overflows
• ADI is really great at detecting linear overflows

• The attacker controls the size of the buffer being written, but not the starting address

 char *ptr;

 ptr = malloc(20);

 strcpy(ptr, argv[1]); /* argv could be bigger than 20 chars */

– The overflowed memory is adjacent to the buffer. Other live buffers, free buffers and
potentially metadata may become corrupted

– As long as the buffer adjacent to the one allocated for ptr has a different ADI color,
any attempt to overflow will trap

malloc’ed area: color 1 adjacent cache line: color 2

prt[0] prt[1] … prt[19] prt[20] prt[21]

Silicon Secured Memory Protection From Read and Write Attacks

A Couple of Famous Examples: Heartbleed & Venom

Buffer Over-Read Attack Buffer Over-Write Attack

Heartbleed - Impacted Websites Using OpenSSL

Heartbeat request sent
to victim

Type Payload_size Payload

HB_REQUEST 65535 Hello

Victim responds with
requested payload size (64K bytes)

Type Payload_size Payload

HB_RESPONSE 65535 Hello ………. ………………….

Payload_size does not
match Payload Unauthorized data

returned to requestor

• Memory access vulnerability
discovered in the open source Quick
Emulator hypervisor platform (QEMU)

• Allows malicious code inside a VM
guest to execute code in the host
machine’s hypervisor security context.
The code then escape the guest VM to
gain control over the entire host

• Caused by a buffer over-write
condition that allows data to be stored
beyond allocated buffer limits

Venom Vulnerability - Impacted Servers Using QEMU

Host System

Sales Server
VM

Database
Server VM

Web server
VM

VM Hypervisor

Host Hardware

Hacker exploits
VENOM to
escape VM

VENOM executes
instructions in
hypervisor and
gains control of
host hardware

Venom
escape

Silicon Secured Memory: Buffer Overflows

Applications Memory

Pointer

Applications Memory

Pointer

Any Processor SPARC M7Processor

SSM Implementation: Application Data Integrity

• H/W compares
pointer “key”
with memory “lock”
– are 4bit numbers

– called “versions”

• Traps if they don’t match
– Sends SEGV or utrap

to process

• H/W masks “key”
before it hits the MMU

64Bytes version

64Bytes version

64Bytes version

64Bytes version

64Bytes version

64Bytes version

64Bytes version

64Bytes version

ld …

st …
version address

ld …

st … version address

(dbx) run

signal SEGV (ADI version 13 mismatch for VA 0x4a900) in main at 0x10988

(dbx) where

…stack trace…

ADI version numbers and coloring
• version numbers use 4 bits

– Valid range : 1 – 13

• 0, 14 and 15 are reserved for system usage

• By default all the memory is tagged with 0

• 0 is not a valid version value for ADI checking

• Adjacent area paradigm

– Adjacent areas are tagged with different version numbers

– 4 bits are sufficient to tag uniquely adjacent buffers (for alloc and free)

– Example int *ptr = malloc(128);

 free(ptr);

 will set version as follow:

ptr[offset] (int) version # (malloc) version # (free) notes

0 - 31 1 8 malloc’ed area

32 - 47 8 8 uphill adjacent cache line
(the downhill adjacent cache line is not tagged)

Silicon Secured Memory
Support for Both Development and Deployment

* App must be coded to use ADI APIs

libdiscoveradi

SPARC M7 hardware
(Enables software stack for Silicon Secured

Memory checking)

Solaris Kernel
(Provides syscalls for user-level applications)

libadimalloc

DEPLOYMENT: Solaris enables
applications to take appropriate
recovery actions in real-time *

Application

DEVELOPMENT: Studio provides
detailed diagnostics for developers
to find and fix memory corruptions

Solaris Studio
12.4/12.5 Beta
discover tool

Example Use of libadimalloc.so

Demo Code

#include <stdio.h>
#include <stdlib.h>

int
main(void){
 char* public = (char*)malloc(sizeof(char)*100);
 char* secret = (char*)malloc(sizeof(char)*100);

 printf("public text -> "); scanf("%s", public);
 printf("secret text -> "); scanf("%s", secret);

 for(int ii = 0; ii < 150; ii++)
 printf("%c\n", public[ii]);

 printf("\n");
 return 0;
}

• Obvious Buffer Overflow (read
beyond end)

• “public” buffer is 100bytes wide

• Code reads 150bytes

– 50bytes are read from adjacent buffer

Output of Demo

On any system

franzh@SPARC-M7,ADI>./malloc

public text -> hello

secret text -> secret

h

e

l

l

o

---snip---

s

e

c

r

e

t

---snip---

franzh@SPARC-M7,ADI>

On a SPARC M7 using
libadimalloc.so
franzh@SPARC-M7,ADI>

 LD_PRELOAD=libadimalloc.so ./malloc

public text -> hello

secret text -> secret

h

e

l

l

o

---snip---

Segmentation Fault (core dumped)

franzh@SPARC-M7,ADI>

Silicon Secured Memory
Support for Both Development and Deployment

* App must be coded to use ADI APIs

libdiscoveradi

SPARC M7 hardware
(Enables software stack for Silicon Secured

Memory checking)

Solaris Kernel
(Provides syscalls for user-level applications)

libadimalloc

DEPLOYMENT: Solaris enables
applications to take appropriate
recovery actions in real-time *

Application

DEVELOPMENT: Studio provides
detailed diagnostics for developers
to find and fix memory corruptions

Solaris Studio
12.4/12.5 Beta
discover tool

Solaris & Linux, SPARC & x86, Remote Development

Oracle Solaris Studio

Application Analytics

Performance Analyzer

Code Analyzer

Thread Analyzer

Extensible IDE

Multi-language Development

C, C++, Fortran Compilers

Performance Library

Debugger

Java

Oracle Solaris Studio

• libdiscoverADI.so

– enables discover to detect and understand runtime-related memory errors
identified by ADI
• % LD_PRELOAD_64=<compiler>/lib/compilers/sparcv9/libdiscoverADI.so a.out

• % discover -i adi a.out
% a.out

– prints a comprehensive error analysis report for memory errors (text or html)

Using discover and ADI to Find Memory Access Errors

Oracle Solaris Studio 12.5 Beta: Discover and Uncover User's Guide - Memory Error Discovery Tool (discover)
https://docs.oracle.com/cd/E60778_01/html/E60755/gmzsf.html

$ a.out
ERROR 1 (UAW): writing to unallocated memory at address 0x50088 (4 bytes) at: main() + 0x2a0 <ui.c:20>
17: t = malloc(32);
18: printf("hello\n");
19: for (int i=0; i<100;i++)
20:=> t[32] = 234; // UAW
21: printf("%d\n", t[2]); //UMR
22: foo();
23: bar();
_start() + 0x108 ERROR 2 (UMR): accessing uninitialized data from address 0x50010 (4 bytes) at: main() + 0x16c <ui.c:21>$
...

Interactively Analyzing discover HTML-Report

Oracle Solaris Studio

Oracle Solaris Studio 12.5 Beta: Discover and Uncover User's Guide – Analyzing discover Reports
https://docs.oracle.com/cd/E60778_01/html/E60755/gjzce.html

compiled with -g

Code Analyzer: GUI to Navigate Tool Results

Oracle Solaris Studio

Error Type

Memory
Allocated

Memory
Freed

Application

Oracle Solaris Studio Code Analyzer

Oracle Solaris Studio 12.5 Beta: Code Analyzer User's Guide
https://docs.oracle.com/cd/E60778_01/html/E60757

Errors Caught by discover and ADI

• Buffer overflow errors

• Freed memory access errors

• Stale pointer memory access errors

• Double free memory access errors

Using Application Data Integrity and Oracle Solaris Studio to Find and Fix Memory Access Errors
https://community.oracle.com/docs/DOC-912448 with full sample source code

https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448

Silicon Secured Memory Developer Tool: discover

• Discover detects runtime memory access violations and memory leaks

• Discover provides detailed diagnostics to find and fix these errors

• Studio 12.5 discover uses M7 Silicon Secured Memory, making violation
detection significantly faster than a software-only approach

• [ABR | ABW] – Beyond Array Bounds Read/Write

• [FMR | FMW] – Freed Memory Read/Write

• [IMR | IMW] – Invalid Memory Read/Write

• [UAR | UAW] – UnAllocated memory Read/Write

• [NAR | NAW]– Non-Annotated Read/Write

• [SBR | SBW]- beyond Stack Bounds Read/Write

• BFM – Bad Free Memory

• BRP – Bad Realloc address Parameter

• CGB – Corrupted Guard Block

• DFM – Double Freeing Memory

• PIR – Partially Initialized Read

• UMR – Uninitialized Memory Read

• OLP – Overlapping source and dest

• AZS – Allocating Zero Size

• SMR– Speculative Memory Read

• [UFR | UFW] – Unknown stack
Frame Read/Write

• [USR | USW] – Unknown Status
while Read/Write

Oracle Solaris Studio 12.5 Beta: Code Analyzer User's Guide – Dynamic Memory Access Errors
https://docs.oracle.com/cd/E60778_01/html/E60757/glmrb.htm
Code Analyzer previse may detect additional error types through static code analysis
https://docs.oracle.com/cd/E60778_01/html/E60757/glmsy.html

1. Write Secure Code

• IDE identifies unsafe code

– Uses Solaris C guidelines and
some CERT C/C++ rules

• Explains issue and offers a
more secure alternative

2. Build Secure Code

• Source code analysis done
with every compile by
default

– previse

• Checks include:
– Beyond array bounds access

– Freed memory

– Memory leaks

3. Run Secure Code

• Compiler includes checks
in every app to catch:

– Stack overflow
[-xcheck=stkovf]

– Falling off the end of a
routine [-xcheck=noreturn]

Studio 12.5: Security Features beyond SSM

$ cc -O –c test.c
”test.c", line 5: Warning: Likely out-of-bounds
read: a[i] in function main

Developer's Guide to Oracle Solaris 11 Security - Secure Coding Guidelines for Developers http://docs.oracle.com/cd/E53394_01/html/E54753/scode-1.html
Appendix G: Security Considerations When Using C Functions http://docs.oracle.com/cd/E53394_01/html/E54753/gnclc.html

http://docs.oracle.com/cd/E53394_01/html/E54753/scode-1.html
http://docs.oracle.com/cd/E53394_01/html/E54753/scode-1.html
http://docs.oracle.com/cd/E53394_01/html/E54753/scode-1.html
http://docs.oracle.com/cd/E53394_01/html/E54753/gnclc.html
http://docs.oracle.com/cd/E53394_01/html/E54753/gnclc.html

• How Discover SSM works

– Interposes on mem allocation routines

– Assigns versions to pointers; ensures
version doesn’t match a neighbor’s
version

– Catches the SEGV traps when illegal
access occurs (i.e. version mismatch)

– Collects error source line/stack trace
and allocation/free source line/stack
trace, then allows app to continue

– Generates report of all recorded errors
at end of run

Developing Secure Software using Oracle Solaris Studio

70x

30x

1.01x

Valgrind/Linux Studio discover,
software-only

Studio discover with
M7 SSM

Base line performance

Overhead with Memory checking enabled

Silicon Secured Memory for Both Development & Production

Modify app to use
libc APIs or direct

syscalls

M7 Hardware
(Always-on Silicon Secured Memory)

Solaris 11.2 SRU8 (and later)
(ADI syscalls)

libc adi* funcs libadimalloc

Any SPARC or
Intel system

Solaris 10 or 11.x

libdiscover
libdiscoveradi

Use in development to find and fix
application memory access errors

Use in production to limit memory
access violations in real-time

• discover a.out
• discover –i adi a.out

LD_PRELOAD_64=
libadimalloc.so

Using Application Data Integrity and Oracle Solaris Studio to Find and Fix Memory Access Errors
https://community.oracle.com/docs/DOC-912448

Low Level SSM – Solaris ADI API
Custom Memory Allocator

• An application needs to meet the following requirements for ADI code
checking

– The application binary must be built in 64-bit mode

– The application needs to enable ADI on the target memory area

– The allocated memory needs to be 64-byte aligned and its size must be multiple of 64

– The allocated area should be set a version number
with the pointer value being adjusted with the corresponding version number.

– Complex pointer manipulation should be avoided, but simple pointer operations works

Custom Memory Allocator

• Memory allocator needs to maintain version data

– Writes version into memory during allocation

– Returns pointer with version embedded

– Allocator writes different version to cache line when freed

• 2 ranges of version numbers: one for memory allocation and one memory free

 1 : used for the area of block object including block buffer
2 – 7 : used for the allocated name locations inside the block buffer
8 – 13 : used for the freed name locations inside the block buffer
mapping : 2 - 8, 3 - 9, 4 - 10, 5 - 11, 6 - 12, 7 - 13

Example

May 5-7, 2015

ADI’fying Custom Memory Allocators

May 5-7, 2015

64-bit mode cc –m64

Memory
ADI enabled

large_block_ptr = (large_block*) memalign(8192, 64 * 1024);
memcntl(large_block_ptr, 64 * 1024, MC_ENABLE_ADI,NULL,0,0)
- Both address and size must be PAGESIZE (8k) aligned

64-bit
alignment

object_ptr = (my_object*) my_malloc(sizeof(my_object));
needs to be changed to:
adjusted_size = (sizeof(my_object) + 63) & ~63; // adjust to multiple of 64
object_ptr = (my_object*) my_malloc(64,adjusted_size); // 64-byte aligned

Version
numbers

adjusted_object_ptr = (my_object*)
adi_set_version(object_ptr, adjusted_size, new_version_number);

Pointer
manipulation

Pointer operations such as array element access by adding pointer and index value still work
adjusted_array_ptr = (my_array*)

adi_get_version(array_ptr, adjusted_array_size, my version_number);
(adjusted_array_ptr + 2)->value = 100; // set the third array element

 // structure value field to 100

Custom Memory Allocator

• Fully documented example in SSM cookbook

– http://swisdev.oracle.com -> Resources

• Using Application Data Integrity and Oracle Solaris Studio to Find and Fix Memory
Access Errors

– https://community.oracle.com/docs/DOC-912448

• Custom Memory Allocators and the discover SSM Library

– https://docs.oracle.com/cd/E60778_01/html/E60755/gphwb.html

More Information

http://swisdev.oracle.com/
http://swisdev.oracle.com/
http://swisdev.oracle.com/
https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448
https://docs.oracle.com/cd/E60778_01/html/E60755/gphwb.html
https://docs.oracle.com/cd/E60778_01/html/E60755/gphwb.html
https://docs.oracle.com/cd/E60778_01/html/E60755/gphwb.html

ADI Caveats

• 64-bit processes only

• Performance impact

– Negligible for the default disrupting traps

– Optional precise traps for store mismatches have a noticeable impact, should only be used for debug

– Updating versions is negligible

• Normalize pointers before

– compare

– arithmetical operations

• ADI has a high probability of catching bugs, but a bad pointer may accidentally have a matching
version

• DMA read (write to memory) resets ADI version to 0

– Impacts userland only if Direct I/O is used

• ADI not used
> pmap -xs `pmap malloc`

2899: ./malloc

 Address Kbytes RSS Anon Locked Pgsz Mode Mapped File

---snip---

FFFFFFFF7F7D0000 16 16 16 - 8K rwx---- [anon]

FFFFFFFF7F7D4000 8 - - - - rwx---- [anon]

---snip---

• ADI “active”
> pmap -xs `pmap malloc`

2903: ./malloc

 Address Kbytes RSS Anon Locked Pgsz Mode Mapped File

---snip---

FFFFFFFF7DCF0000 256 256 256 - 64K rwx--i- [anon]

FFFFFFFF7DD40000 320 320 320 - 64K rwx--i- [anon]

---snip---

ADI Observability
pmap without/with libadimalloc.so

Oracle Software In Silicon Cloud

http://SWiSdev.Oracle.com

Opening up to broader
set of developers

• Online Click through agreement

• Free for OPN partners

• SPARC Enterprise Developers

• University Researchers

How You Can Use Silicon Secured Memory

• Enable your existing software – No need to recompile!

– Check application binaries with Solaris Studio 12.4 / 12.5 Beta

– Link with Solaris libraries – e.g., malloc() enhanced with ADI: libadimalloc

– Certify on your test environment

• Develop your applications with Silicon Secured Memory

– C/C++ 64-bit code, Solaris ADI API

– Comprehensive tools available with Solaris Studio 12.4 / 12.5 Beta

• Run applications that are enabled with Silicon Secured Memory (examples):

– Oracle Database 12c (12.1.0.2) uses Silicon Secured Memory in SGA
– 12.1.0.2 Readme: 2.4 Data Analytics Accelerators on SPARC for Oracle Database Overview

– ISV software that has been developed with Silicon Secured Memory

http://docs.oracle.com/database/121/READM/chapter12102.htm#READM122

• Large enterprise app with heavy use of

memory intensive processing

• Time to value for SPARC M7

– 4 cross platform bugs tagged in 2 days

– 180x faster bug identification

• Other memory validation tool: 3 hours

• Silicon Secured Memory and Discover: 1 minute

Silicon Secured
Memory

Integrated. Simple. Fast.

Oracle Solaris
Studio

+

Real World Experience
A Case Study

The M7 Microprocessor Can Protect the Entire Cloud
Even if 90% of the Microprocessors are not M7s

• Even a few deployed M7 systems can detect an attack on the entire compute cloud

• Once an attack is discovered, the other unprotected systems then can be patched

Silicon Secured Memory

Oracle M7

Applications Memory

Pointer “Y”

Pointer “R”

GO

Pointer “B”
GO

• Protects data in memory

• Hidden “color” bits added
to pointers (key), and content (lock)

• Pointer color (key) must match content
color or program is aborted

• Set on memory allocation,
changed on memory free’

• Protects against access off end of
structure, stale pointer access and
malicious attacks

• Extremely efficient for software
development

M7 Processor

Advancing the State-of-the-Art

• Always-On Security in Silicon

• Near zero performance impact

• Use in production

– Silicon Secured Memory (SSM)

• Application Data Integrity (ADI)

• High-Speed Encryption

– Near zero performance impact

– 32 Crypto Accelerators

• SQL in Silicon

– High-Speed Memory Decompression

• “Capacity in Silicon”

– Primitives to accelerate In-Memory Database Operations

– 8 Data Analytics Accelerators (DAX) w/ 32 Pipelines

– Apache SPARK demo at OOW2015

M7 Microprocessor – World’s First Implementation of Software Features in Silicon

CORE

CLUSTER

CORE

CLUSTER

CORE

CLUSTER

CORE

CLUSTER

CORE

CLUSTER

CORE

CLUSTER

CORE

CLUSTER

CORE

CLUSTER

A
C

C
E

L
E

R
A

T
O

R
S

 C
O

H
E

R
E

N
C

E
,
S

M
P

 &
 I

/O

IN
T

E
R

C
O

N
N

E
C

T

C
O

H
E

R
E

N
C

E
,
S

M
P

 &
 I

/O

IN
T

E
R

C
O

N
N

E
C

T

M
E

M
O

R
Y

 C
O

N
T

R
O

L
 M
E

M
O

R
Y

 C
O

N
T

R
O

L

L3$ & ON-CHIP NETWORK

A
C

C
E

L
E

R
A

T
O

R
S

http://blogs.oracle.com/FranzHaberhauer

Silicon Secured Memory

• Silicon Secured Memory Cookbook

– https://swisdev.oracle.com/_files/ssm-cookbook-page1.html

• Using Application Data Integrity and Oracle Solaris Studio to Find and Fix Memory
Access Errors

– https://community.oracle.com/docs/DOC-912448

• See Raj Prakash’s blog @ https://blogs.oracle.com/raj/
– Oh, no! What Have I Done Now? - Common Types of Memory Access Errors

– Let's Get The Low Hanging Fruits - Static detection of memory access errors using Previse

– Solving Trickier Problems - Detecting Dynamic Memory Access Errors Using Discover

– Surprise! Unexpected Benefits of Hardware Support for Detection of Memory Access Errors

– PDF: https://blogs.oracle.com/raj/resource/Silicon-Secured-Memory-Application.pdf

More Information

https://swisdev.oracle.com/_files/ssm-cookbook-page1.html
https://swisdev.oracle.com/_files/ssm-cookbook-page1.html
https://swisdev.oracle.com/_files/ssm-cookbook-page1.html
https://swisdev.oracle.com/_files/ssm-cookbook-page1.html
https://swisdev.oracle.com/_files/ssm-cookbook-page1.html
https://swisdev.oracle.com/_files/ssm-cookbook-page1.html
https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448
https://blogs.oracle.com/raj/
https://blogs.oracle.com/raj/entry/common_types_of_memory_access
https://blogs.oracle.com/raj/entry/common_types_of_memory_access
https://blogs.oracle.com/raj/entry/common_types_of_memory_access
https://blogs.oracle.com/raj/entry/common_types_of_memory_access
https://blogs.oracle.com/raj/entry/let_s_get_the_low
https://blogs.oracle.com/raj/entry/let_s_get_the_low
https://blogs.oracle.com/raj/entry/let_s_get_the_low
https://blogs.oracle.com/raj/entry/let_s_get_the_low
https://blogs.oracle.com/raj/entry/solving_trickier_problems_br_detecting
https://blogs.oracle.com/raj/entry/solving_trickier_problems_br_detecting
https://blogs.oracle.com/raj/entry/solving_trickier_problems_br_detecting
https://blogs.oracle.com/raj/entry/solving_trickier_problems_br_detecting
https://blogs.oracle.com/raj/entry/surprise_unexpected_benefits_of_hardware
https://blogs.oracle.com/raj/entry/surprise_unexpected_benefits_of_hardware

Oracle Solaris Studio

• History from SPARCWorks to Sun Workshop to Forte Developer to Sun Studio
to Oracle Solaris Studio

• https://blogs.oracle.com/tatkar/entry/studio_release_names_from_the

• http://www.oracle.com/technetwork/server-storage/solarisstudio/training/index-jsp-141991.html

• on OTN
• http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html

• Oracle Studio YouTube Channel
• https://www.youtube.com/watch?v=9gOtXtHfvI4&list=PLKCk3OyNwIzuRh2YsM2MtFAwB_qEWC5Rn&index=3

• Remote Development
• https://www.youtube.com/watch?v=R8ELRznEoSQ&list=PLKCk3OyNwIzuRh2YsM2MtFAwB_qEWC5Rn&index=24

• Oracle Solaris Studio Learning Library (Screencasts)
• https://apexapps.oracle.com/pls/apex/f?p=44785:141:10078869691805::NO:141:P141_PAGE_ID%2CP141_SECTION_ID:147%2C1059

More Information

http://www.oracle.com/goto/solarisstudio

https://blogs.oracle.com/tatkar/entry/studio_release_names_from_the
https://blogs.oracle.com/tatkar/entry/studio_release_names_from_the
https://blogs.oracle.com/tatkar/entry/studio_release_names_from_the
http://www.oracle.com/technetwork/server-storage/solarisstudio/training/index-jsp-141991.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/training/index-jsp-141991.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/training/index-jsp-141991.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/training/index-jsp-141991.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/training/index-jsp-141991.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/training/index-jsp-141991.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/training/index-jsp-141991.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/training/index-jsp-141991.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
https://www.youtube.com/watch?v=9gOtXtHfvI4&list=PLKCk3OyNwIzuRh2YsM2MtFAwB_qEWC5Rn&index=3
https://www.youtube.com/watch?v=9gOtXtHfvI4&list=PLKCk3OyNwIzuRh2YsM2MtFAwB_qEWC5Rn&index=3
https://www.youtube.com/watch?v=9gOtXtHfvI4&list=PLKCk3OyNwIzuRh2YsM2MtFAwB_qEWC5Rn&index=3
https://www.youtube.com/watch?v=R8ELRznEoSQ&list=PLKCk3OyNwIzuRh2YsM2MtFAwB_qEWC5Rn&index=24
https://www.youtube.com/watch?v=R8ELRznEoSQ&list=PLKCk3OyNwIzuRh2YsM2MtFAwB_qEWC5Rn&index=24
https://www.youtube.com/watch?v=R8ELRznEoSQ&list=PLKCk3OyNwIzuRh2YsM2MtFAwB_qEWC5Rn&index=24
https://apexapps.oracle.com/pls/apex/f?p=44785:141:10078869691805::NO:141:P141_PAGE_ID,P141_SECTION_ID:147,1059
https://apexapps.oracle.com/pls/apex/f?p=44785:141:10078869691805::NO:141:P141_PAGE_ID,P141_SECTION_ID:147,1059

